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FOREWORD

The present work arose out of a need to consider sound absorption processes
in viscoolastic materials other than naturally occurring dissipation by
molecular relaxation. The latter becomes especially weak at low frequencies and
should be supplemented by alternative mechanisms. of several possible
electromechanical and magnetomechanical dissipation processes we choose to
investigate absorption due to mechanically induced eddy currents.

The work was carried out in the Nonmetallic Materials Branch of the
Materials Division of the Research and Technology Department under an IR grant.
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CHAPTER I

ACOUSTIC REFLCTZON FROM A UNIFORMLY MAGNETIZED VISCOELASTIC PLATE
ON A CONDUCTING GROUND PLANE

The purpose of this report is to assess the performance of an acoustic
attenuator in the form of a viscoelastic sheet attached to an electrically
conducting backing, the sheet consisting of either alternating magnetized and
unmagnetized strips of material or a distribution of magnetized disks in an
unmgnetized lattice. In the present paper we consider the situation where the
magnetized regions, assumed to be electrically nonconducting, are well
separated, thus focussing attention on absorption due to induced eddy currents
in the backing or ground plane while neglecting interactions between magnetized
regions. We also treat the magnetized regions as if they were infinite in
extent as far as the acoustic response is concerned, thus neglecting edge
effects due to differences in the elastic responses of magnetized and
unmagnetized regions. These elastic responses may be different not only because
of the magnetic moment but also because of basic differences in the elastic
moduli and densities of the materials.

The two simplest magnetic structures in this category are uniformly
magnetized, either in the plane of the sheet or perpendicular to it. In the
present paper we focus on uniform, perpendicular magnetization.

In order to come up with a readily calculable problem, we consider only
one-dimensional geometries. We realize at the outset however, that finite
unifor ly magnetized plates do not generate uniform magnetic fields. We
therefore have to make a number of simplifying assumptions to reduce the
magnetoelastic interaction problem to a one-dimensional one. Consequently, the
resulting theoretical developments will be highly approximate. In addition, we
have to make certain mathematical approximations. Nevertheless it is hoped that
the results will convey at least the order of magnitude of the expected
attenuation.

Consider a uniformly magnetized plate with the magnetization vector
perpendicular to a conducting ground plane and bonded laterally to an -"

u=tgnetized viscoelastic material, as shown in Figure 1. Let the shape of the
plate be either a circular disk or a long, rectilinear slab. We will argue that
we may replace the magnetization by an equivalent surface current distribution,
as shown in Figure 1. We may then solve for time varying fields above and below
the ground plane as functions of time varying surface currents, 1o(z,t) (ampere-
turn/cm), where the time variation of I is ultimately due to acoustic
vibrations in the plate.

- *** P % 'j*q% jW* *.
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We assume that the local magnetic dipole moment is frozen into the
viscoelastic material. lence,it does not change because of the relative
displacemet of two neighboring points of the material. The only change in the
mpmtization envisioned here is that due to changes in the local density of
dAwle moments which occurs as a consequence of such local relative displace-
ments of the material. The magnetization, No, is the magnetic moment per unit ,-Volume: "\

voiNo

dVNO= d (1) ::

In line with our goal of considering a one dimensional problem, we assume
that the motion of the plate in response to a normally incident acoustic wave is
strictly in the a-direction as shown in Figure 1. This makes No and 10
'f nctions of z only. Furthermore, in this case V x M. W 0 and since the
most general source function for the vector potential, so, is:

& -- YMJ dV + da (2)

V S

we find that it is a function of the surface current 10 = Mo x I only - even
%ben a compressional wave exists in the slab. Throughout the motion of the slab
we a tbherefore calculate the vector potential on the basis of the current
source distribution shown in Figure 1. The source potential becomes:

1%

= f I(f°'t) da (3)

S

where I (zo,t) is a function of the local displacement u(zo,t). Thus
coupling between the magnetic and the viscoelastic problem occurs because of the
presence of u (Sot) in ao.

The dependence of I on u may be calculated as follows. Suppose we are
given a distribution f(s) on a < s < b. Consider the new distribution ht(z') on
a't <' bet, e t , a, b't # b, which is obtained from the coordinate trans-
fo mation-ze - g(z, t), where we indicate that the transformation may be a
function of a parameter t, such as time. Since:

f(s) d- M h') d' h[g(z,t)I d4).

3

3:.
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we have

h[g(z,t) f(z) (5).

In the present problem we are working with the transformation:

z'(t) - z + u(zt) a g(z't) (6)

and the distribution f(z) - Io * constant on the interval 0 < z < L, which
exists when no acoustic disturbance is present in the plate. Identifying
h(a'(t)) with I(z,t) at any given time, we find:

Itz'lt]=0z ) (7) ""-

Hence,in the presence of a compressional wave, the current at z' z + u(z,t) is
modified by ou(z,t)/Iz at z. For the long wavelength limit, which is the one we
are interested in here 3u/z is small and we therefore disregard this dependence
and replace Ulz') by 10.

In order to solve for the acoustic response, we need the magnetic volume
force exerted by the total magnetic field at any point inside the slab. We are
going to asume that this force may be calculated in a certain average sense
from the same equivalent surface current, I., that is being used to calculate
the magnetic field. Suppose we have solved the magnetodynamic boundary value
problm for the current lo(z,t) and have found the vector potential at z > 0,
A(x,t). Let A(za) be the Fourier transform. The resulting Lorentz force on
an equivalent current loop will generally not be normal to the plane of the
slab. But in keeping with our aim of simplifying this problem to the point
where only vertical forces and motions remain, we consider only the y-component
of the total magnetic field. We also consider only the case of a rectilinear
strip of material of width 2A and thickness L, since this geometry is of
primary interest to us. The case of the circular disk can be analyzed in
exactly the same way. We give the corresponding vector potential below. Hence
the Fourier transform of the Lorentz force per unit height and unit length of
slab on e.g.,a right hand surface current element of strength I(z,() at z is:

1(z,) - I(s,) X By(zw)

SA(z ,w) ,--
- -I(z,u) X Az (8)

a:

4 **I.~ * -. A2....% * *..**-...
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In order to obtain an expression for the total magnetic volume force (force/unit
volume) normal to the plane of this current, we first add the force on the left
hand current filament. This force is in the same direction, even though the
field is in the opposite direction, because the current is reversed. Dividing
by the width of the strip, 2A, we obtain the average magnetic volume force or,
more accurately, we obtain a simple analytical quantity which we will use in
place of the true average force inside the material:

1 aA(z 0)
" UW-) -- (z,&,) x ZA (9)

From this force we have to substract the equilibrium magnetic force which exists
when no acoustic field is present because the displacement, u(z,t) in the
solution of the acoustic problem represents the displacement from position
coordinates reached not only under the influence of static, mechanical forces r .
but also under the influence of magnetic forces due to the static magnetization,
No . Hence the resultant volume force is:

8 YA(zw) -,%(z)

P(z,M)-- X - x 3z

1.0 X S zw o(z):' '.3'.Az, 3 L (1a)s J-

This is the Fourier transform of the local magnetic force due to all sources;
internal, due to other magnetic moments, as well as external, due to induced
eddy currents in the ground plane. The latter force will enter the dynamic
equations explicitly, whereas the magnetic force due to other internal moments
will be taken care of by means of a phenomenological modification of Hooke's
Law. However, for the moment we will not distinguish between these various
sources and calculate the total vector potential resulting from all time varying
internal (equivalent surface) and external (eddy) currents. The part of the
resultant potential that is due to internal sources will be discarded later.

Let the applied vector potential for unit stationary surface current at
z - zo, be ao(z,zo). This yields the slab's static magnetization which is
unmodified by the presence of the ground plane if we assume that the magnetic
permeability of the ground plane is that of free space, which we do. Then the
applied potential due to a suface current element to 10 at z = z + u(zo,t) at
time t is ao(zz o + U(Zot)). Expanding this to first order with respect to Zo,
or more accurately, taking the Frechet differential with respect to u(zo,t) at
z * zo, we write:

ao(z,zo + U(zo,t)) ao(z,zo) + u(zo,t) u

- ao(z,z o) + &ao(zz o ) (II)

5-.-

V -\.' ~ V'~~: 4 ~*%%**~.*.~o** *.
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Nov let a and a be the Fourier transforms of the solutions for the total
vector potentials corresponding to a. and &so, respectively. Then:

Ao$z) - (z,:4o) dzo (12)

and:

A(zuv) - [a(zzo) + LA&U,zoaa)J dzo (13)

Hence, the total local magnetic pressure is:

L

00 /

P*(z10 S -.j az (0 w Z0Zod

I a f u(:0u") a 0  dz0  (14).

where we recall that the vector potential in Equation (14) is understood to be
only that part of the total potential that is due to induced eddy currents in
the ground plane.

This press ure has to be accounted for in the dynamic equations. When
Pa 0 these are:

Hooke's Law:

2 32u OP ~ 1a
Pic) azat at(1a

and:

Newton's 2nd Law:

ai~ (15b)

where P is the mechanical pressure, p the mass density and [c) the speed of
sound in the absence of magnetic forces. in order to obtain the corresponding
uegnetoviscoelastodynamic equations we simply add the magnetic volume force on

6
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the righthand side of Equation (15b) and modify Hooke's Law implicitly by
changing the wave speed in the material from [c) to c-c(o). In other words,
the internal magnetic interactions change the elastic properties of the material,
conceivably even its viscoelastic properties, by moving the equilibrium state of
the dynamic response to a different point on a nonlinear response characteristic.
To account for this change, we simply modify Hooke's Law in the way indicated
above. The resulting equations are: --

2lu Iai

pc2  - - .. (16a)
z t St .. a-

7 - + Pm (16b)

We regard c as an emperically determined quantity. It's dependence on MO  J.,

should be kept in mind throughout the remainder of this paper. When the change
in performance of the magnetic slab is investigated as a function of the
interaction with the ground plane, via Pm, it must be kept in mind that as
Pm (specifically Io) changes, so does c(Mo), unless we assume that the
longitudinal modulus of the material in which the magnetic moments are embedded
is adjusted to conpensate for the effects of internal magnetic interactions.
Conversely, if we change c while keeping P. fixed, we will ultimately . .
encounter incompatible combinations of the two and may obtain unphysical results.

Since u(z,t) appears under the integral sign on the right hand side of . W
Equation (L6b) this is an integro-partial differential equation. It can be
solved readily by means of perturbation techniques and we indicate below how
this is done. A quicker way is by resorting to the following approximation. We
replace u(zo,t) in Pm by its average value on o < zo  L:

L-
u(zo,) f u(zo,e) dzo i u(zo,w) a a(w) (17)

0

and obtain:

P(Z,) 20 - a(z,L,w) a(zO,

=04 [by(z,L,w) - by(z,O,w)] (18)

.. '

7
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In this form the equations may be integratedreadily. We are still taking
account of the coupling between the acoustic and electromagnetic fields, but are
sacrificing the point by point amplitude and phase relationship that exists
between the local displacement and the y-component of the magnetic field. In
view of other approximations that were made earlier, this seems to be a
reasonable step at this point. The solution for u(zopt) will be a function of
a and later on we will have to solve for a using Equation (17). Since
a(*) will occur linearly on both sides of this equation, this step is
trivial.

For the reflection coefficient we need the steady state solution of
Equation (16) with Pm as defined by Equation (18). Like a(w), the magnetic
fields in Equ~tion (18) remain unspecified for the moment. Introducing the time
dependence Clot and setting v = au/st we obtain:

2 dv m i.-

PC . (19a)
dz

dP"''
- - + + P (19b)

Substituting Equation (19a) into Equation (19b) one finds:

d2v 2 ik
d 2  k ; =- i PR ; kM (20)

This inhoogeneous, second order, ordinary differential equation must now be
solved subjict to certain boundary conditions. Introducing the incident and
reflected waves:

P-- k iko(z-L) , 3 ik"(z-L)

V 0 - 1 [Alp iko(zL) - 0iko(z-L]

and requiring that both v and P be continuous across the boundaries, we find:

z = L ; pocov(L) B E1 - Al = PoCovo (21)

and:

k dvs*= L ; - k =nA I +EBIn
= Po (22) "

~ ~ .'. ... .. o
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Defining the known input admittance of the backing as G(O)=-v(O)/P(O), one has:

sOdv (23'
X 0 G (O) L - v (0) =0 (23) .;

dz

Combining Equations (21) and (22) we obtain the boundary condition on v at zaL:

M2ikA dv ioCok_
z = L ; (24)

pc dz PC/

and from Equation (23) at z=O we have:

d ik (25)
dz P.C G(O)J

Suppose the solution of Equation (20) has been found. The final step is to
calculate the reflection coefficient, B2 - IBl/AuI 2 . Using Equations (21) and
(22) one finds that:

oCov (L) I - B vk1 I -pco G(L) (26)PI~l' - ik (l oo (L 26 ''

where, by definition, G(L) is the input admittance of the magnetic layer.
Equation (26) will therefore yield the answer to the problem once v(z) has been
found.

The most compact expression for v(z) is obtained with the aid of the
Green's function, g, of this problem. This function must satisfy mixed
homogeneous boundary conditions according to Equations (24) and (25), i.e., for
g we must have:

'I°'

= 0 ; DI(g 1 EVg4 a V() g 0 (27)

.;.

ikpoco

D2(nL 00S (28)

Referring to the general solution of this type of problem in three dimensions as
given in standard texts, the solution of the present problem may be written:

9
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r1)., m dv(z'w) dg(z,:°'e) zo - L6.-v(zdw) - z w dZ j ,, 0 "

19zo 0 :

L
" (" Pm(z°,w) g(zpz°9#A) dz° ; 0 < z < L (29)

where g is the solution of:

dg2 (z,zom) 2.(30)

+ k SZzo, - - 6(z-zo )  
(30)

In Equation (29) the usual surface integral has been reduced to function
evaluations at the two boundary points and the volume integral has become a line
integral. Using the boundary conditions, Equations (24), (25), (27), and (28),
one finds:

v(z,") "1 + #2 (31)

where:

'1 " g(z,L,w) (32)

and:

I2 - 'L P,(zO, ) g(zzOw) dzO  (33)

The function *1 therefore yields the reflection coefficient of the
nonmagnetic layers, whereas #2 yields the effects due to magnetization.

Had we not used the average displacement, a(m) in Equation (18), we
would now have a double integral on the right hand side of Equation (33) with v
appearing in the integrand. Equation (31) could,therefore,be used as the
starting equation for a perturbation expansion of the solution. For instance, -
with the aid of Equations (14), (31), (32), and (33) one finds that to first
order, the solution for v is:

10



NSWC TR 84-226

V (a*, ) g(z,L,l) - g(zo,L,w)

aa(z' ,ZoW)

3z azo g(z,z',w) dz' dzo  (34)

with remainder:

0 a(t',tW)

Av(zw*) -\cIfv(toa aW t

*g(5,tW) g(zz',w) dz' dz dt dt(3

" followsais

petrbto series is:
:?-

~2
- '~)~~r)(36)

The ratio of the magnetic* field2eeg density, Polo~ and the
mechanical kinetic energy density PC in Equation (36) is a small quaotity
in all real magnetoelastic materials. Furthermore, it may be assumed that
lIki is of order unity or larger at all frequencies. Hence, X. is a small
number and the expansion converges rapidly. On the other hand, the smallness of
this parameter also tells us that the effects we are going to observe will be
weak since the solution with finite Pm will differ little from that for a
nonmagnetic slab.

In order to find v explicitly, we need g. By definition:

yl(z) y2 (zo) z zo

g (37)~

a Y2(z) Ylz) z zo

where yj. and Y2 are two linerarly independent solutions of:

LIZ +k~y 0(38)
hteo

~..r~r~d '~ % ~ * % ~ ~ * % * % % * ~ * * *4 . - ..-%*
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and £o,(yly2) is the Wronskian:

jj dY2  dyl)£o(ylsY2) XYI dz .- Id~ (39) y

Evidently, & will satisfy its boundary conditions if yl and Y2 are chosen
such that:

zin 0 DI(yl) 0
(40)

zinL ;2Y2

We use the two linearly independent functions:

yl sin(kz -1 (41)

and

Y2 - inlk(z-L) -021 (42)

with Wroskian:

£0(Yj,Y2) -- k sin(kL - 1 -2 (3

Applying the boundary conditions yields:

tanelS -ipc G(O) (44)

and:

tanIS 2J a OLc (45)

for the two integration constants in Equation (31) and the problem is solved.

12
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For g(z~z,99W) one finds:

[sin[kz- 11 sin[k(L-zO) - 2 ) z <.°.

g(z,zo,-) L k sin(kL -21- *2) J --< z° (46)S[ Z4.- O] Z Z" +---+ "o z > zo ;:

Removing the singularity in the slope of the Green's function from the integral
in Equation (33) leads to a more explicit form of the solution:

z
ik [Y(z) Y2(zo) - Y2(z) yl(zo)] Pm(zo)

v(z) - c1 yl(z) - c h dzo  (47)

where:

ik f Pm(zo) Y2(zo) dzo=l c 2  + -- :( 4 8 )
PC1

0

and:

2ikAl Y2(L)-
c2  (49)

Observing that the Wronskian is independent of z, we note that: ......

I LA 0 (Y 1 , Y 2 ) = - ' 2 - 2 Y l ) - Y I ' - i l''':
L jL -L "...:

=-Y 2(L) D2[Y(L)]

Substituting into c2, we find that:

2ikA1 (50)
2 -;c" D2[y1(L)]

'13

,.:.,,'.
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Before writing down the reflection coefficient, ye calculate a(m).
Writing Equation (31) in the form:

v(z) = Alfl(z) + a(*) f2(z) (51)

where:

fl(z) * 2ik S(z,L,a) (52)

and:

Lik f Putzo,*) ?ii e
f2(z) - g-(zzo,) dzo (53)

0

and using Equation (17) one finds:

a(*) (54)

where:

e~u) -I - '2

-" / fl dz (55)

and:

4 " ' f2 dz (56)

For the purpose of estimating the performance difference between magnetized

and unmagnetized states we write B in the form B - go + A, where B0 is the
reflection coefficient in the absence of magnetization and AB is the part
depending o!. A measure of the effectiveness of the magnetization for two
otherwise similar materials is given by:

14
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Rt [181j2 -IB.121 2 Real [a So*] + 1AS12

We therefore want to calculate both 2 and So . With the aid of Equations (24),
(26), (51) and (54) we find:

1 (fl(L) (1 - #2) + 41 f2(L)
- C ° (L) + - (2 + P0c fI(L)] (1 - 2) + P0 0% 1 f 2(L) (58)

Setting *2 - 0 P. we obtain:

0 -P 0o -0 f 1(L)
-- c G(L) p(L)o (09)

so 0 o 2 + oCo fl(L)

where G(L)o, is the input admittance of a nonmagnetic layer. An explicit
expression for this function may be obtained by observing that according to
Equations (46) and (52):

2i sin (kL - 0I) sin(82) (60)PC I sin (kL- 0 1 - 02)"

Substituting in Equation (59) and using Equations (44) and (45), we obtain the
well-known expresssion:

G( - tan (UL)
I - ipc G(o) tan (kL)

With the-aid of Equations (58) and (59) we now find the desired expressions for
B, 0 , and A:

- + o Co G(L)] , GIL' (61)

6r 1where: "--

L11 oco
so GL (62)

+o ., C G(L)o16)

15
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from Equation (59) and:

q f2(L) (63)

Hence from Equations (59), (61) and (63):

f2 (64)

[T-- 2"]

Combining Equations (59) and (63) we also obtain:

L ~_ J Pc° *1 f2(L) "

so 2(1 + Po o fI(L)) (I - 2) (65)

At this point we have an explicit expression for R, the change of the
reflection coefficient due to the magnetization M.o, in terms of the Fourier
transform of the vector potential in Equation 14. Hence, as a final step we
calculate the quantity "a(Zzou)/(*) - &a(zzoPW)/8zo from the gradient of
the applied potential in Equation (11), i.e., from hao(Zzo,) - a(")
$aol(&zo,9l*)IzoU0 O. Because of our approximation of u( 0 ,N) it is not
necessary to perform the differentiation on z., and we calculate the resultant
potential a(z,zo,w) from the applied potential ao(z,zo)e-igt. Clearly, if we
did not want to use the average of u in the dynamic equations we could obtain the
integrand in the expression for the magnetic pressure by simply differentiating
the expression for a(z,zo,w), as calculated below, with respect to zo, and
multiplying by u(zo,*). Conceptually the potential a(z,zo,w) is the result of
applying a bifilar current at z-zo with unit amplitude and frequency w. -
Physically we are dealing with the motion of a constant current at z - z+ +
U(zo,t). This current is changing its flux linkage with the ground plane and
hence is inducing eddy currents. If the motion Su(zo, )/8t were uniform
we could have derived the form of hao(Z,Zo,t) from the classical theory of
electromagnetism in moving media. For if the applied flux is denoted by * we
have for any arbitrary current filament in the plane of the boundary with area
element da and line element ds:

itjLa dsm JEo ds

- V X(v X bo ) * da - (v X bo ) * ds , (66)

16
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i" e":

-- =- X bo(z,zo) (67)

or:

Aa0 - - u X bo - -u X (boz k + boy j) "iu boy

t 3ao t 3ao0';:

Iu A . u (68)

since 80, is a function of (z-zo ) and the subscript zero on the electric
field Eo, the magnetic field bo refers to "applied" quantities. Equation (68)
was obtained previously, Equation (11), in spite of the fact that in the present
case motion was assumed to be uniform. This agreement is evidently due to the
approximation we made in the derivation of Equation (11). Had we gone to second
order, we would have picked up a term of the form Iu(zo,t)1 2 a2ao/3zo2Iu=O
which would have introduced the curvature of the potential as well as the first
harmonic, with frequency 2w.

The differential equations for a(zzo,W) are:

z > 0; V2a = -iaolO4(z - zo) [6(y - A) - 6(y + A)] (69)

and:

da ."-.

z 0; V2a moo -idaoa (70)

where the time dependence eiIt has been cancelled on both sides. The
Fourier transform of the source potential is logarithmic and may be represented
by the following integral:

Volo k1Z -of sin(ka) sin(ky) dk -..,

= -- • (71)
0

Solving the boundary value problem by requiring the continuity of a(z,zow)
and the parallel component of the magnetic field, i.e., of the gradient
sa(,£oU)/I£ at x - o leads to the Fourier transform of the total
potential a(z,zow). When z > o:

17
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a(z,z0.w) -a(Zzo) + - e -~~ 0

*in(kA) sin(ky) (-.-~d 9 (2

where q (k2 - iumouo)lI2. in passing, we note that the corresponding
solution for the case of a circular disk of radius bl is:

a~zz0,.) - 01&bf {kI~Z-oI , -k(z+zo)}

*JI(kbl) Jl(kr) dk (73)

where JI(x) is the cylindrical Bessel function of order one which is regular
at X - 0.

Note that the absolute magnitudes of the integrands decrease exponentially
with increasing kc. The jiportant contributions to the values of the integrals
therefore occur in the neighborhood of kc a 0. The intergals are readily
evaluated if in the neighborhood of kc - 0 the expression ((k-q)/(k+q)) is
approximated by an exponential function with an exponent linear in kc. We
therefore write:

f(k) - -explg(k)J (74)

and expand g(k) -log [f(Ic)] in a Taylor series near k-O to first order in k.
We obtain:

g(O) -logif(0)] 0

and:

1 dfj -2 j - -2
dk f (k) dk ~ 0  k ~ I~h

Ulk-0~~~-. *5**ia:OkO =v
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Hence:

2

f(k) 'exp[-k(l + i)6] ,62 - 2 (75)

and 6 is the electromagnetic "skin depth." Substituting this into a(zZo,w)
and integrating one finds:

- AOIO [(z -zo0 2(y )2 *
a(z,zo,%) -log

(z , -)2 +
(z + zo 2  + (y +-

-- 
( 7 6 )

Evidently, the part of a(zzoiw) in Equation (76) that is independent of
6 is due to internal sources. The only reason for carrying it to this point
in the calculation was that it was needed as the source-term for the eddy
current problem. Its effect on the dynamic response of the plate has already
been accounted for in Hooke's Law, Equation (16a). We will therefore discard it
now.

Substituting the remaining term in Equation (76) into Equation (18) and
setting y - + A (y - -A was accounted for when the volume force was
calculated) one finds:

20°2alo z + L + x I

Pm(z') (z + L + ) 2 + (2A) 2  z + L + x

(z + x) l (77)
(z + x) 2 + (2A)2  Z x (1 +

where ,aoIo2 =B2 =(gauss)/4w is the magnetic field energy density per cm
3

in cgs units.

The expression for Pm(zw) may now be substituted into Equation (61) to
yield the reflection coefficient for a normally incident pressure wave and into
R, Equation (57), to yield the change in performance.

We have evaluated R for several different combinations of p, c, B and
6, see Figures 2 through 9. The plate was assumed to be 10 cm thick and 20 cm
wide, i.e., both L and A in Figure 1 were 10 cm. The XFIL integration
routine of the NSWC/WOL computer library was used to calculate the various
integrals in Equation (64).
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As indicated in the text we expected to have to use rather large internal
fields in order to obtain observable effects. The results bear this out; unless
we apply at least several hundred thousand gauss, unless we use an Mo that
produces a 3 of this order of magnitude, there are no discernible differences in
the responses of magnetic and nonmagnetic plates. We find that the energy ratio
in Rquation (36) is indeed the controlling parameter in this situation. The
conductivity of the substrate is of relatively minor importance.

In closing we might add that although we believe the order of magnitude of
the effect was calculated correctly, we could have done better had we used the
perturbation expansion of the solution in our numerical calculations. In
retrospect we feel that the phase information that was suppressed when the local
displacement in the magnetic volume force was averaged, might have had a
significant influence on the details of the frequency dependence of a2. On
the other hand, in view of the many conceptual simplifications we have made in
the course of solving this problem, this refinement would have been academic.
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CHAPTER 2 .-. %

ACOUSTIC ENERGY ABSORPTION IN AN ELECTRICALLY CONDUCTING, VISCOELASTIC
MATERIAL IN A UNIFORM MAGNETIC FIELD

In Chapter 1 the sources of the time varying magnetic field on the one hand
and the electromagnetic absorber on the other were spatially separate. If the
magnetoviscoelastic material was made electrically conducting both functions
could be combined in the same volume. Two apparently different mechanisms would
now give rise to conduction currents. In addition to the mechanism discussed in
Chapter 1, which we think of as a 3B/3t effect, there would now be the (v X
B) effect, which is due to convective transport of charge. Both effects are due
to the relative motion of "sources" and "observers." In the first case the
"sources" move, hence aB/at at the observer was picked up as (v X B) in
Chapter 1, where v referred to the motion of the source (the magnetic moment).
In the second case the "observer" moves, i.e., v refers to the motion of the
observer (the mobile charge carrier). Note that in the former case relative
motion of source and observer is detectable only because B is nonuniform.

The method of analysis used in Chapter I is too approximate for a situation
in which the magnetic material discussed in that section simply becomes
conducting. The direction of the magnetic field inside the magnetized slab
would also be wrong, since it is roughly in the same direction as the local
displacement and therefore eliminates the (v X B) effect., If on the other hand
the uniform magnetization is assumed to be parallel to the ground plane instead
of perpendicular to it, then the internal induction will also be roughly uniform
and parallel to the ground plane and effects due to finite conductivity are
maximized. These effects may then be analyzed readily if at the same time we
neglect the magnetic field variations that were the source of dissipation in
Chapter 1, namely those due to local displacements of magnetic moments under the
influence of dilatational waves and focus only on convective charge transport
arising from the translational motion of the molecules; i.e., on the (v X B) .... -

effect. The constant magnetization Mo may then be replaced by the constant
magnetic induction, Bo, where Bo - Po~o, or equivalently we may
consider an unmagnetized material in a constant parallel field with a wave
travelling at right angles to the field direction. In fact, since we really
only need the attenuation constant, or the imaginary part of the propagation
vector, k, in order to estimate changes in power dissipation, we will only solve
for a wave in an infinite medium rather than for reflections from a layer.
Henceowe are looking for the complex dispersion relation k(w,o,B).

Under the action of a pressure wave in the material we think of the mobile
charge as being "carried along" by local displacements of molecules, i.e., there
is no charge separation. The (v X 3) electric field creates a current, J, and

2
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this current locally exerts a Lorentz force, J X B on the material. As in
Chapter I the equations of motion are:

+_J X H (78)

and:

OC2 Ov ap (79)

As in the theory of magnetohydrodynamics, the equation for the magnetic
field is obtained from:

V X = B (80)
at

V X B = la (81)

and:

a a[E + (v X B)) (82)

in mks units, where the last equation is stricly true only for a uniform
velocity, v. Eliminating J and E from Equations (80), (81), and (82) yields:

- v2  + V X (v X B) - . (83)"°t

for the magnetic induction. We assume that B consists of a strong, stationary
background field, B9, and a relatively weak response field, b; B - Bo + b.
Furthermore, if Bo is assumed to point in the x-direction and v in the -

s-direction, then J is in the y-direction and the response field, b is parallel
to Bo.

Assuming. the time dependence e-it in Equations (78), (79), and (83)
yields:

iM(V X i) X - pc 2 AV- pw2V (84)
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and:

L V2B + V X (v X B) - -iwb (85)

Taking account of the fact that the only coordinate dependence is on z, we find:

-iw d(B2) d2v + '286)

2iwc 2  d " d-z2 
-C2

and:

d(vB) d2B i'ib(7
dz z2 + iob (87)

Using the fact that Bo, is constant, Ib/B9 l << 1 and neglecting products
involving v and b compared with products involving B., in combination with v

1 or b, we obtain: :+

d2 b (d""
dz + imapeb - BOo\d (88)

d2v + 12 iuB0 Idb\ 89-- - (89)

dz2  c2 v pc2 \dzj

The desired dispersion relation for the propagation of dilatational waves
in the material is now obtained if we substitute the solution,

vo eikz i bo eikZ (90)

into Equations (88) and (89):

k2 ] [k2 02. 0 (91)

or:

k + + 2 i( + i x(l + y)) + (1 + i x(l + y)) 2
- 4ix1/2} (92)

.

31

L.o



NSWC Ti 84-226

where:

x Mc

and:

y

The expression in the curly bracket of Equation (92) therefore modifies the

propagation constant ko - w/c which holds in the absence of a background

field or when oao. Note that the parameter x may also be written:

2 (93)
2 2

ko26

where:

6 ;2(94)

is the electromagnetic "skin depth," or:

Il2
x S x 10-2 (95)

where Ao is the wavelength in the material in the absence of magnetic effects.

The two parameters, y and 6 are seen to be the controlling variables of this

problem, as they were in the reflectivity problem of section (A). Let:

4., Henry+
P o 4w7'- lt 

-_. .

a - 102 Mh!.o

* - 2w x 102 Hz

c = 1.5 x l03 -
7

sec
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Bo  103 gauss = 10-1 Weber

-103

Then:

x .45

and:

y 3.54 x I0
-6

Hence,with these orders of magnitudes for the parameters, the ratio of magneto-
static to kinetic energy density is very small; y-o and from Equation (92) it
folows that the dispersion relation is the same as in the case of o - o.

The induction inside the material has to rise to the order of magnitude of
several hundred thousand gauss before the dispersion relation, and hence the
absorption mechanisms are significantly altered. Note also from Equation (88)

that:

b - L " (96)

Since vo in this type of situation is of the order of magnitude of 10
- 5 to

10-6 u/sec, the assumption that ib/Boi << I is satisfied. Evidently, the
inequality remains valid even when x << 1.

In Figures 10 through 18 we have plotted the real and imaginary parts of k,
Equation (92), over the real and imaginary parts of (w/c) respectively as
functions of frequency.

As in Chapter 1 we find that large magnetic fields are needed for strong
effects. -

Summarizing the results of both chapters we conclude that unless the ratio
of the characteristic magnetic field energy density associated with a given
situation to the mechanical energy density, pc 2 , of the material is at least
of order unity, neither the electrical conductivity of a magnetoviscoelastic
material nor induced eddy currents in neighboring structures should be expected
to lead to significant electromagnetic absorption of elastic waves or
dissipation of acoustic energy.
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